Question : If $\frac{x}{y}=\frac{a+2}{a-2}$, then the value of $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ is:
Option 1: $\frac{4a}{a^{2}+2}$
Option 2: $\frac{2a}{a^{2}+2}$
Option 3: $\frac{4a}{a^{2}+4}$
Option 4: $\frac{2a}{a^{2}+4}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4a}{a^{2}+4}$
Solution : Given: $\frac{x}{y}=\frac{a+2}{a-2}$ Let $x = a+2$ and $y=a-2$, Now, $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ = $\frac{(a+2)^{2}-(a-2)^{2}}{(a+2)^{2}+(a-2)^{2}}$ = $\frac{(a^{2}+4a+4)-(a^{2}-4a+4)}{(a^{2}+4a+4)+(a^{2}-4a+4)}$ = $\frac{8a}{2a^{2}+8}$ = $\frac{4a}{a^{2}+4}$ Hence, the correct answer is $\frac{4a}{a^{2}+4}$.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : What is the value of $\frac{4x^2+9y^2+12xy}{144}$?
Option 1: $(\frac{x}{3} + \frac{y}{4})^2$
Option 2: $(\frac{x}{3} + y)^2$
Option 3: $(\frac{x}{4} + \frac{y}{6})^2$
Option 4: $(\frac{x}{6} + \frac{y}{4})^2$
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Option 1: $\frac{3}{7}$
Option 2: $1\frac{1}{7}$
Option 3: $1$
Option 4: $2$
Question : If $\frac{x+1}{x-1}=\frac{a}{b}$ and $\frac{1-y}{1+y}=\frac{b}{a}$, then the value of $\frac{x-y}{1+xy}$ is:
Option 1: $\frac{2ab}{a^{2}-b^{2}}$
Option 2: $\frac{a^{2}-b^{2}}{2ab}$
Option 3: $\frac{a^{2}+b^{2}}{2ab}$
Option 4: $\frac{a^{2}-b^{2}}{ab}$
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Option 1: $\sqrt{3}$
Option 2: $3\sqrt{3}$
Option 3: $16\sqrt{3}$
Option 4: $2\sqrt{3}$
Question : If $6^{x}=3^{y}=2^{z}$, then what is the value of $\frac{1}{y}+\frac{1}{z}-\frac{1}{x}$?
Option 1: 1
Option 2: 0
Option 3: 3
Option 4: 6
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile