Question : If $x^4+x^{-4}=47, x>0$, then what is the value of $x+\frac{1}{x}-2?$
Option 1: 1
Option 2: 0
Option 3: 5
Option 4: 3
Correct Answer: 1
Solution : Given expression, $x^4+x^{-4}=47$ ⇒ $x^4+\frac{1}{x^4}=47$ Adding 2 on both sides, ⇒ $x^4+\frac{1}{x^4}+2=47+2$ ⇒ $x^4+\frac{1}{x^4}+2\times x^2\times\frac{1}{x^2}=49$ ⇒ $(x^2+\frac{1}{x^2})^2=7^2$ [As $a^2+b^2+2ab=(a+b)^2$] ⇒ $x^2+\frac{1}{x^2}=7$ Again adding 2 on both sides, ⇒ $x^2+\frac{1}{x^2}+2=7+2$ ⇒ $x^2+\frac{1}{x^2}+2\times x\times\frac1x=9$ ⇒ $(x+\frac1x)^2=3^2$ ⇒ $x+\frac1x=3$ ⇒ $x+\frac1x-2=3-2$ $\therefore x+\frac1x-2=1$ Hence, the correct answer is 1.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Option 1: $2$
Option 2: $\frac{\sqrt{15}}{2}$
Option 3: $\sqrt{5}$
Option 4: $\sqrt{3}$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Question : If $x^4+\frac{1}{x^4}=1154$, where $x>0$, then what is the value of $x^3+\frac{1}{x^3}?$
Option 1: 205
Option 2: 214
Option 3: 185
Option 4: 198
Question : If $\sqrt{x}+\frac{1}{\sqrt{x}}=3, x>0$, then $x^2\left(x^2-47\right)=?$
Option 1: $0$
Option 2: $2$
Option 3: $-2$
Option 4: $-1$
Question : If $x^4+x^{-4}=194, x>0$, then the value of $x+\frac{1}{x}$ is:
Option 1: 14
Option 2: 6
Option 3: 4
Option 4: 8
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile