Question : If $(2x - 5y)^3 - (2x+5y)^3 = y[Ax^2 + By^2]$, then what is the value of $(2A - B)$?
Option 1: 25
Option 2: 10
Option 3: 15
Option 4: 40
Correct Answer: 10
Solution : According to the question, $(2x - 5y)^3 - (2x+5y)^3 = y[Ax^2 + By^2]$ ⇒ $[2x - 5y - 2x - 5y][4x^{2} + 25y^{2} + 20 xy + 4x^{2} - 25y^{2}] = y[Ax^{2} + By^{2}]$ ⇒ $[-10y] [ 12x^{2} + 25y^{2}] = y[Ax^{2} + By^{2}]$ ⇒ $y[ -120x^{2} - 250y^{2}] = y[Ax^{2} + By^{2}]$ Comparing both sides, we get, $A = –120, B = –250$ Now, ⇒ $(2A - B) = - 240 + 250 = 10$ Hence, the correct answer is 10.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $2^{2x-y}=16$ and $2^{x+y}=32$, the value of $xy$ is:
Option 1: $2$
Option 2: $4$
Option 3: $6$
Option 4: $8$
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Option 1: –3
Option 2: 0
Option 4: 21
Question : If $x+y+z=10$, $x y+y z+z x=25$ and $x y z=100$, then what is the value of $(x^3+y^3+z^3)$?
Option 1: 450
Option 2: 540
Option 3: 550
Option 4: 570
Question : If $x + y = 10$, $2xy = 48$ and $x > y$, then find $2x - y$.
Option 1: 6
Option 2: 8
Option 3: 4
Option 4: 3
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Option 1: –1
Option 2: 1
Option 3: 2
Option 4: 4
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile