Question : If $5 \sin^2 A+3 \cos^2 A=4$, $0<A<90°$, then what is the value of $\tan A$?
Option 1: 0
Option 2: 3
Option 3: 1
Option 4: 2
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : Given: $5\sin^2 A+3\cos^2 A=4$ ⇒ $2\sin^2 A+ 3\sin^2A + 3\cos^2 A=4$ ⇒ $2 \sin^2 A+3=4$...........[Using $ \sin^2 A+ \cos^2 A=1$] ⇒ $\sin^2 A=\frac{1}{2}$ ⇒ $\sin A=\frac{1}{\sqrt{2}}$ ⇒ $A=45°$ So, $\tan A=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $0°<A<90°$, the value of $\frac{\tan A\ -\ \sec A\ -\ 1}{\tan A\ +\ \sec A\ +\ 1}$ is:
Option 1: $\frac{\sin A-1}{\cos A}$
Option 2: $\frac{1-\sin A}{\cos A}$
Option 3: $\frac{1-\cos A}{\sin A}$
Option 4: $\frac{\sin A+1}{\cos A}$
Question : The value of $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}$ is $(0°<A<90°)$:
Option 1: $2\operatorname{cosec}A$
Option 2: $2 \sec A$
Option 3: $2 \sin A$
Option 4: $2 \cos A$
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Option 1: $\frac{1}{\sqrt3}$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $\sqrt3$
Question : If $\sin5\theta = \cos 20° (0°<\theta<90°)$, then the value of $\theta$ is:
Option 1: 4°
Option 2: 22°
Option 3: 10°
Option 4: 14°
Question : If $5\cos\theta+12\sin\theta=13,\ 0^0<\theta<90^0$, then the value of $\sin\theta$ is:
Option 1: $\frac{5}{13}$
Option 2: $–\frac{12}{13}$
Option 3: $\frac{6}{13}$
Option 4: $\frac{12}{13}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile