Question : If $\cos \theta=\frac{9}{13}$, then what is the value of $\operatorname{cosec} \theta$?
Option 1: $\frac{13}{\sqrt{22}}$
Option 2: $\frac{13 \sqrt{22}}{44}$
Option 3: $\frac{2 \sqrt{22}}{13}$
Option 4: $\frac{\sqrt{22}}{13}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13 \sqrt{22}}{44}$
Solution : Given, $\cos\theta = \frac{9}{13}$ We know, $\sin^2\theta+\cos^2\theta=1$ ⇒ $\sin θ = \sqrt{(1 - \cos^2θ)}$ ⇒ $\sin θ = \sqrt{(1 - (\frac{9}{13})^2)}$ ⇒ $\sin θ = \sqrt{1 - \frac{81}{169}}$ ⇒ $\sin θ = \sqrt{\frac{88}{169}}=\frac{2\sqrt{22}}{13}$ ⇒ $\operatorname{cosec} θ = \frac{1}{\sin θ}=\frac{13}{2\sqrt{22}} = \frac{13\sqrt{22}}{44}$ Hence, the correct answer is $\frac{13\sqrt{22}}{44}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Option 1: $\sqrt2-\sqrt3$
Option 2: $\frac{\sqrt{2}(3+\sqrt{3})}{3}$
Option 3: $\frac{\sqrt{2}(3-\sqrt{3})}{3}$
Option 4: $\frac{3\sqrt{2}+\sqrt{3}}{3}$
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Option 1: $\frac{16}{25}$
Option 2: $\frac{40}{41}$
Option 3: $\frac{41}{40}$
Option 4: $\frac{31}{30}$
Question : If $\cos \theta+\sin \theta=\sqrt{2}$, then what is the value of $\sec \theta \operatorname{cosec} \theta$ ?
Option 1: $\frac{1}{2}$
Option 2: $1$
Option 3: $2$
Option 4: $0$
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Option 1: $2 \cos A$
Option 2: $\sec A$
Option 3: $2\cos A$
Option 4: $2 \sec A$
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Option 1: $\frac{1}{41}$
Option 2: $\frac{43}{29}$
Option 3: $\frac{41}{29}$
Option 4: $\frac{1}{43}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile