14 Views

Question : If $\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$, what is $\frac{x}{y} =?$

Option 1: $\frac{7}{6}$

Option 2: $\frac{5}{6}$

Option 3: $\frac{5}{1}$

Option 4: $\frac{7}{1}$


Team Careers360 14th Jan, 2024
Answer (1)
Team Careers360 19th Jan, 2024

Correct Answer: $\frac{5}{1}$


Solution : $\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$
Applying componendo and dividendo method,
$\frac{x^{3}+3y^{2}x - y^{3}-3x^{2}y}{x^{3}+3y^{2}x + y^{3}+3x^{2}y}=\frac{35-19}{35+19} = \frac{16}{54}$
⇒ $\frac{(x-y)^3}{(x+y)^3} = \frac{8}{27}$
⇒ $\frac{x-y}{x+y} = \frac{2}{3}$
⇒ $\frac{x+y}{x-y}=\frac{3}{2}$
Again, applying the componendo and dividendo method to solve the equation.
$\frac{x+y+x-y}{x+y-x+y}=\frac{3+2}{3-2}$
$\Rightarrow\frac{x}{y} = \frac{5}{1}$
Hence, the correct answer is $\frac {5}{1}$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026
Application Date: 10 Jan, 2026 - 9 Feb, 2026
Admit Card Date: 27 Dec, 2025 - 20 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books