11 Views

Question : In a right-angled triangle for an acute angle $x$, find $\sin x$. It is given that $\tan x = 5$.

Option 1: $\frac{1}{3}$

Option 2: $\frac{5}{\sqrt{26}}$

Option 3: $\frac{2}{5}$

Option 4: $\frac{5}{\sqrt{28}}$


Team Careers360 2nd Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: $\frac{5}{\sqrt{26}}$


Solution : Given,
$\tan x = 5$
We know that, $\tan x=\frac{\text{Perpendicular}}{\text{Base}}=\frac{5}{1}$
Let the perpendicular($p$) and base($b$) be 5 units and 1 unit.
Let the hypotenuse be $h$.
Using the Pythagoras theorem,
$h^2=p^2+b^2$
⇒ $h^2=5^2+1^2$
⇒ $h=\sqrt{26}$ units
So, $\sin x =\frac{\text{Perpendicular}}{\text{Hypotenuse}}= \frac{5}{\sqrt{26}}$
Hence, the correct answer is $\frac{5}{\sqrt{26}}$.

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books