Question : In a right-angled triangle for an acute angle $x$, find $\sin x$. It is given that $\tan x = 5$.
Option 1: $\frac{1}{3}$
Option 2: $\frac{5}{\sqrt{26}}$
Option 3: $\frac{2}{5}$
Option 4: $\frac{5}{\sqrt{28}}$
Correct Answer: $\frac{5}{\sqrt{26}}$
Solution : Given, $\tan x = 5$ We know that, $\tan x=\frac{\text{Perpendicular}}{\text{Base}}=\frac{5}{1}$ Let the perpendicular($p$) and base($b$) be 5 units and 1 unit. Let the hypotenuse be $h$. Using the Pythagoras theorem, $h^2=p^2+b^2$ ⇒ $h^2=5^2+1^2$ ⇒ $h=\sqrt{26}$ units So, $\sin x =\frac{\text{Perpendicular}}{\text{Hypotenuse}}= \frac{5}{\sqrt{26}}$ Hence, the correct answer is $\frac{5}{\sqrt{26}}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Option 1: $\sqrt{\frac{1+\sin 2 A}{\cos 2 A}}$
Option 2: $\sqrt{\frac{1-\sin 2 A}{\cos 2 A}}$
Option 3: $\sqrt{\frac{1+\sin A}{\cos A}}$
Option 4: $\sqrt{\frac{1-\sin A}{\cos A}}$
Question : In $\triangle ABC, \angle B=90^{\circ}$ and AB : BC = 1 : 2. The value of $\cos A+\tan C$ is:
Option 1: $\frac{5+\sqrt{5}}{2 \sqrt{5}}$
Option 2: $\frac{1+\sqrt{5}}{2 \sqrt{5}}$
Option 3: $\frac{2 \sqrt{5}}{2+\sqrt{5}}$
Option 4: $\frac{2+\sqrt{5}}{2 \sqrt{5}}$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Question : If $\sin A=\frac{2}{3}$, then find the value of (7 – tan A)(3 + cos A).
Option 1: $\frac{61}{3}+\frac{17}{3 \sqrt{5}}$
Option 2: $\frac{61}{3 \sqrt{5}}+\frac{17}{3}$
Option 3: $\frac{61}{3}+\frac{17}{\sqrt{5}}$
Option 4: $\frac{61}{3}-\frac{17}{3 \sqrt{5}}$
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Option 1: $\frac{2}{3 \sqrt{3}}$
Option 2: $\frac{3}{2 \sqrt{3}}$
Option 3: $\frac{5}{2 \sqrt{3}}$
Option 4: $\frac{5}{3 \sqrt{3}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile