18 Views

Question : In an isosceles $\triangle ABC$, $AB = AC$, $XY || BC$. If $\angle A=30°$, then $\angle BXY$?

Option 1: 75°

Option 2: 30°

Option 3: 150°

Option 4: 105°


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: 105°


Solution : Given: In an isosceles $\triangle ABC$, $AB = AC$.
$\angle BAC=30°$
We know that the sum of all the angles in a triangle is 180°.

In an isosceles $\triangle ABC$, $AB = AC$.
So, $\angle ABC=\angle ACB$
$\angle ABC + \angle ACB + \angle BAC = 180°$
$⇒2\angle ABC + 30° = 180°$
$⇒\angle ABC=\frac{180°–30°}{2}$
$⇒\angle ABC=\frac{150°}{2}=75°$
Since $XY || BC$, $\angle AXY=\angle ABC=75°$
$\angle BXY=180°–\angle ABC$
$⇒\angle BXY=180°–75°$
$⇒\angle BXY=105°$
Hence, the correct answer is 105°.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books