19 Views

Question : In $\triangle \mathrm{XYZ}$, I is the incentre of the $\triangle \mathrm{XYZ}$. If $\angle \mathrm{XYZ}=40$$^\circ$, then what is the value of $\angle \mathrm{XIZ}$?

Option 1: 110$^\circ$

Option 2: 130$^\circ$

Option 3: 115$^\circ$

Option 4: 120$^\circ$


Team Careers360 9th Jan, 2024
Answer (1)
Team Careers360 13th Jan, 2024

Correct Answer: 110$^\circ$


Solution :
Given, I is the incentre of the $\triangle \mathrm{XYZ}$.
$\angle \mathrm{XYZ}=40^\circ$
Since angle formed at incentre opposite to any side of triangle = $90^\circ+\frac{1}{2}\times$ (Angle opposite to that side of triangle)
So, $\angle \mathrm{XIZ} = 90^\circ+\frac{1}{2}\times \angle \mathrm{XYZ}$
= $90^\circ+\frac{1}{2}\times 40^\circ$
= $90^\circ+20^\circ$
= $110^\circ$
Hence, the correct answer is 110$^\circ$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books