Question : In $\triangle \mathrm{ABC}, \overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$, intersecting $\overline{\mathrm{AC}}$ at $\mathrm{D}$. Also, $\mathrm{BD}=12 \mathrm{~cm}$. If $\mathrm{m}(\overline{\mathrm{AD}})=6 \mathrm{~cm}$ and $\mathrm{m}(\overline{\mathrm{CD}})=4 \mathrm{~cm}$, find the area $\left(\right.$in $\left.\mathrm{cm}^2\right)$ of $\triangle \mathrm{ABC}$.
Option 1: 45
Option 2: 50
Option 3: 60
Option 4: 75
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 60
Solution : Given, $\overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$ $\mathrm{BD}=12 \mathrm{~cm}$, $\mathrm{m}(\overline{\mathrm{AD}})=6 \mathrm{~cm}$ and $\mathrm{m}(\overline{\mathrm{CD}})=4 \mathrm{~cm}$ $AC = AD + CD = 10$ cm Area of $\Delta ABC$ = $\frac{1}{2}\times \text{base}\times \text{height}$ = $\frac{1}{2}\times AC\times BD$ = $\frac{1}{2}\times (6+4)\times 12$ = $60$ cm2 Hence, the correct answer is 60.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : $\triangle \mathrm {ABC}$ is similar to $\triangle \mathrm{PQR}$ and $\mathrm{PQ}=10 \mathrm{~cm}$. If the area of $\triangle \mathrm{ABC}$ is $32 \mathrm{~cm}^2$ and the area of $\triangle \mathrm{PQR}$ is $50 \mathrm{~cm}^2$, then the length of $A B$ (in $\mathrm{cm}$ ) is equal to:
Option 1: 10
Option 2: 4
Option 3: 6
Option 4: 8
Question : In $\triangle \mathrm{CAB}, \angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. If $\mathrm{AC}=24 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$. then find the value of $AD$ (in cm).
Option 1: 9.23
Option 2: 8.23
Option 3: 7.14
Option 4: 10.23
Question : In $\triangle $ABC, AD$\perp$ BC and AD2 = BD × DC. The measure of $\angle$ BAC is:
Option 1: 60°
Option 2: 75°
Option 3: 90°
Option 4: 45°
Question : $\triangle \mathrm{ABC}$ is an isosceles triangle with $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}$. If $\mathrm{AC}=12 \mathrm{~cm}$, then the length of $\mathrm{BC}$ (in $\mathrm{cm}$) is equal to:
Option 1: $6 \sqrt{2}$
Option 2: $8$
Option 3: $6$
Option 4: $8 \sqrt{2}$
Question : AD is the median of $\triangle \mathrm{ABC}$. G is the centroid of $\triangle \mathrm{ABC}$. If AG = 14 cm, then what is the length of AD?
Option 1: 42 cm
Option 2: 28 cm
Option 3: 35 cm
Option 4: 21 cm
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile