Question : Let $A, B, C,$ and $D$ be the angles of a quadrilateral. If they are concyclic, then the value of $\cos\ A+\cos\ B+\cos\ C+\cos\ D$ is:
Option 1: 0
Option 2: 1
Option 3: –1
Option 4: 2
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : $A, B, C$, and $D$ are the angles of a quadrilateral and they are concyclic. So, $\angle A+\angle C=\angle B+\angle D=180°$ $\angle A=180°–\angle C$ $\therefore\cos\ A=\cos(180°-C)=–\cos\ C$ Similarly, $\cos\ D=–\cos\ B$ $\cos\ A+\cos\ B+\cos\ C+\cos\ D$ $=\cos\ A+\cos\ B-\cos\ A-\cos\ B$ $=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $a =\cot A+\cos A$ and $b =\cot A-\cos A$, then find the value of $a^2-b^2-4 \sqrt{ab}$.
Option 2: –1
Option 3: 1
Option 4: –4
Question : If $a+b+c=0$ and $a^2+b^2+c^2=40$, then what is the value of $a b+b c+c a$?
Option 1: –30
Option 2: –20
Option 3: –25
Option 4: –40
Question : The value of $(x^{b+c})^{b–c}(x^{c+a})^{c–a}(x^{a+b})^{a–b}$, where $(x\neq 0)$ is:
Option 1: 1
Option 2: 2
Option 4: 0
Question : If a, b, c are real and $a^{2}+b^{2}+c^{2}=2(a-b-c)-3, $ then the value of $2a-3b+4c$ is:
Option 1: –1
Option 2: 0
Question : If a + b + c = 0, then the value of (a + b – c)2 + ( b + c – a)2 + ( c + a – b)2 is:
Option 2: 8abc
Option 3: 4(a2 + b2 + c2)
Option 4: 4(ab + bc + ca)
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile