Question : Out of the numbers 0.3, 0.03, 0.9, and 0.09, the number that is nearest to the value of $\sqrt{0.9}$ is:
Option 1: 0.3
Option 2: 0.03
Option 3: 0.9
Option 4: 0.09
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0.9
Solution : The value of $\sqrt{0.9}= \sqrt{\frac{9}{10}}$ = ${\frac{3}{\sqrt{10}}}$ = ${\frac{3\sqrt{10}}{10}}$ $\sqrt{10}$ is greater than 3 but less than 4. So, 9 < 3$\sqrt{10}$ < 10 ⇒ 0.9 < ${\frac{3\sqrt{10}}{10}}$ < 1 ⇒ 0.9 < $\sqrt{0.9}$ < 1 Hence, the correct answer is 0.9.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : What is the value of $\frac{(0.91)^3+(0.09)^3}{ [(0.91)^2-0.0819+(0.09)^2]}$?
Option 1: 1
Option 2: 5
Option 3: 4
Option 4: 6
Question : The value of $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ is:
Option 1: $\sqrt{2}$
Option 2: $\sqrt{3}$
Option 3: $1$
Option 4: $4(\sqrt{3}+\sqrt{2})$
Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Option 1: $3 \sqrt{2}$
Option 2: $4 \sqrt{2}$
Option 3: $2 \sqrt{3}$
Option 4: $2 \sqrt{5}$
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Option 1: $\sqrt{2}+1$
Option 2: $\sqrt{2}-1$
Option 3: $\sqrt{3}-1$
Option 4: $\sqrt{3}+1$
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Option 1: $\sqrt{3}$
Option 2: $3\sqrt{3}$
Option 3: $16\sqrt{3}$
Option 4: $2\sqrt{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile