Question : Simplify the given expression: $(1 + x)^3 + (1 – x)^3 + (–2)^3$
Option 1: $6(1 - x^2)$
Option 2: $-3(1 - x^2)$
Option 3: $-6(1 - x^2)$
Option 4: $3(1 - x^2)$
Correct Answer: $-6(1 - x^2)$
Solution : Given expression, $(1 + x)^3+ (1 - x)^3 + (-2)^3$ We know, $(a+b)^3=a^3+b^3+3a^2b+3ab^2$ And $(a-b)^3=a^3-b^3-3a^2b+3ab^2$ ⇒ $(1 + x)^3+ (1 - x)^3 + (-2)^3$ = $1+x^3+3(1)^2(x)+3(1)(x)^2+1-x^3-3(1)^2(x)+3(1)(x)^2-8$ = $1+x^3+3x+3x^2+1-x^3-3x+3x^2-8$ = $6x^2-6$ = $-6(1-x^2)$ Hence, the correct answer is $-6(1 -x^2)$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Simplify the given expression. $(x - 2y)(y - 3x) + (x + y)(x - y) + (x - 3y)(2x + y)$
Option 1: $2y(x - 3y)$
Option 2: $2y(x + 3y)$
Option 3: $2x(x - 3y)$
Option 4: $2x(x + 3y)$
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Option 1: $1$
Option 2: $\frac{(x-3)}{(x+3)}$
Option 3: $\frac{(x+4)}{(x-3)}$
Option 4: $\frac{(x-3)}{(x+4)}$
Question : Simplify the given expression. $(1 - 2x)^2 - (1 + 2x)^2$
Option 1: $8x$
Option 2: $-8x$
Option 3: $-(2 + 8x^2)$
Option 4: $2 + 8x^2$
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Option 1: 7
Option 2: 9
Option 3: 6
Option 4: 8
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Option 1: 2
Option 2: 0
Option 3: 1
Option 4: 3
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile