Question : The given expression is equal to: $(\cot B-\tan B)\sin B\cos B$:
Option 1: $1-2 \sec ^2 B$
Option 2: $1-2 \cos ^2 {B}$
Option 3: $2 \cos ^2 {B}-1$
Option 4: $2 \sec ^2 {B}-1$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2 \cos ^2 {B}-1$
Solution : $(\cot B-\tan B)\sin B\cos B$ = $(\frac{\cos B}{\sin B}-\frac{\sin B}{\cos B})\sin B\cos B$ = $(\frac{\cos^2 B - \sin^2 B}{\sin B\cos B})\sin B\cos B$ = $\cos^2 B - \sin^2 B$ = $\cos^2 B - (1- \cos^2 B)$ = $2\cos^2 B - 1$ Hence, the correct answer is $2\cos^2 B - 1$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The given expression is equal to: $1-\frac{\tan ^2 \phi}{\sec ^2 \phi}$
Option 1: $\operatorname{sin}^2 \phi\cos ^2 \phi$
Option 2: $\operatorname{sin}^2 \phi\cot ^2 \phi$
Option 3: $\cot^2 \phi \cos^2 \phi$
Option 4: $\tan^2 \phi\cos^2 \phi$
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Option 1: $\operatorname{cosec}P-\cot P$
Option 2: $\sec P-\tan P$
Option 3: $\sec P+\tan P$
Option 4: $\operatorname{cosec} P+\cot P$
Question : The value of $\frac{\sin\theta-2\sin^{3}\theta}{2\cos^{3}\theta-\cos\theta}$ is equal to:
Option 1: $\sin\theta$
Option 2: $\cos\theta$
Option 3: $\tan\theta$
Option 4: $\cot\theta$
Question : Simplify the following expression: $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$
Option 1: $2 \cos A$
Option 2: $2 \tan A$
Option 3: $2 \sec A$
Option 4: $2 \sin A$
Question : $\frac{\cos \theta}{\sec \theta-1}+\frac{\cos \theta}{\sec \theta+1}$ is equal to :
Option 1: $2 \sec ^2 \theta$
Option 2: $2 \cot ^2 \theta$
Option 3: $2 \cos ^2 \theta$
Option 4: $2 \sin ^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile