Question : The given expression is equal to: $\frac{\left(1+\tan^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$
Option 1: $\sec^2A$
Option 2: $\sec A$
Option 3: $\tan A$
Option 4: $\tan^2A$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan A$
Solution : Given: $\frac{\left(1+\tan ^2 A\right)}{\operatorname{cosec}^2 A \cdot \tan A}$ $=\frac{\left(\sec^2 A\right)}{\operatorname{\frac{1}{\sin^2A}} \cdot \frac{\sin A}{\cos A}}$ $=\frac{\left(\frac{1}{\cos^2 A}\right)}{\operatorname{\frac{1}{\sin A \cdot \cos A }}}$ $=\frac{\sin A \cdot \cos A }{\cos^2 A}$ $=\frac{\sin A}{\cos A}$ $=\tan A$ Hence, the correct answer is $\tan A$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Simplify the given expression. $\sqrt{\frac{1+\cos P}{1-\cos P}}$
Option 1: $\operatorname{cosec}P-\cot P$
Option 2: $\sec P-\tan P$
Option 3: $\sec P+\tan P$
Option 4: $\operatorname{cosec} P+\cot P$
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Option 1: $2\sec^2A$
Option 2: $\sec \mathrm{A} - \mathrm{cosec A}$
Option 3: $\sec \mathrm{A} + \mathrm{cosec A}$
Option 4: $2 \;\mathrm{cosec^2 A}$
Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Option 1: $2 \cos A$
Option 3: $2\cos A$
Option 4: $2 \sec A$
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Option 1: $\frac{1}{\cos ^2 A\left(1+\sin ^2 A\right)}$
Option 2: $\frac{1}{\sin ^2 A\left(1-\sin ^2 A\right)}$
Option 3: $\frac{1}{\sin ^2 A+\operatorname{cosec}^2 A}$
Option 4: $\frac{1}{\sin ^2 A\left(1+\cos ^2 A\right)}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile