Question : The LCM of $\frac{3}{8}, \frac{5}{16},$ and $\frac{7}{2}$ is:
Option 1: $101 \frac{1}{2}$
Option 2: $52 \frac{1}{2}$
Option 3: $28 \frac{1}{2}$
Option 4: $25 \frac{1}{4}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $52 \frac{1}{2}$
Solution : LCM of Fraction = $\frac{\text {LCM of numerator}}{\text{HCF of denominator}}$ LCM of 3, 5, and 7 = 3 × 5 × 7 = 105 HCF of 8, 16, and 2 = 2 So, LCM of $\frac{3}{8}, \frac{5}{16}$ and $\frac{7}{2}=\frac{105}{2}=52 \frac{1}{2}$ Hence, the correct answer is $52 \frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The value of $1 \frac{3}{4}+1 \frac{5}{7} \div 2 \frac{3}{7} \times 2 \frac{3}{7}=$?
Option 1: $1 \frac{11}{28}$
Option 2: $2 \frac{13}{28}$
Option 3: $3 \frac{13}{28}$
Option 4: $4 \frac{23}{28}$
Question : The value of $15 \div 8-\frac{5}{4}$ of $\left(\frac{8}{3} \times \frac{9}{16}\right)+\left(\frac{9}{8} \times \frac{3}{4}\right)-\left(\frac{5}{32} \div \frac{5}{7}\right)+\frac{3}{8}$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 3
Question : The value of $3 \frac{1}{5} \div 4 \frac{1}{2}$ of $5 \frac{1}{3}+\frac{1}{8} \div \frac{1}{2}$ of $\frac{1}{4}-\frac{1}{4}\left(\frac{1}{2} \div \frac{1}{8} \times \frac{1}{4}\right)$ is:
Option 1: $\frac{13}{15}$
Option 2: $\frac{7}{8}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{53}{60}$
Question : The HCF of $\frac{1}{2}, \frac{3}{4}, \frac{5}{6},$ and $\frac{7}{8}$ is:
Option 1: $\frac{105}{2}$
Option 2: $\frac{1}{24}$
Option 3: $\frac{7}{24}$
Option 4: $\frac{1}{48}$
Question : If $2x+\frac{2}{x}=3$, then the value of $x^{3}+\frac{1}{x^{3}}+2$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{5}{8}$
Option 4: $\frac{7}{8}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile