Question : The value of (1 + cot A – cosec A)(1 + tan A + sec A) – 1 is:
Option 1: 1
Option 2: 2
Option 3: 3
Option 4: 0
Correct Answer: 1
Solution : $(1+ \cot A – \operatorname{cosec} A)(1 + \tan A + \sec A) – 1$ $=(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A})(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A})-1$ $=(\frac{\sin A+\cos A-1}{\sin A})(\frac{\cos A+\sin A+1}{\cos A})-1$ $=\frac{(\sin A+\cos A)^2-1^2}{\sin A \cos A}-1$ $=\frac{\sin ^2 A +\cos^2 A+2\sin A \cos A-1}{\sin A \cos A}-1$ $=\frac{1+2\sin A \cos A-1}{\sin A \cos A}-1$ $=\frac{2\sin A \cos A}{\sin A \cos A}-1$ $=2-1$ $=1$ Hence, the correct answer is 1.
Answer Key | Eligibility | Application | Selection Process | Result | Cutoff | Admit Card
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Question : The value of $(\operatorname{cosec}A+\cot A)(1 - \cos A)$ is:
Question : What is the value of $\frac{\sin (A+B)}{\sin A \cos B}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile