Question : The value of $\text{cot 17°}(\text{cot 73°} \cos^{2}22°+\frac{1}{\cot 17°\sec^{2}68°})$ is:
Option 1: $0$
Option 2: $1$
Option 3: $2$
Option 4: $\sqrt{3}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : Use: $\cot 73°= \tan(90°-73°)= \tan17°$ and $\cos^{2}22° = \cos^{2}(90°-68°) = \sin^2 68°$ $\text{cot 17°}(\text{cot 73°} \cos^{2}22°+\frac{1}{\cot17°\sec^{2}68°})$ = $\text{cot 17°}(\text{tan 17°} \sin^{2}68°+{\tan17°\cos^{2}68°})$ = $\text{cot 17°}[\text{tan 17°}(\sin^{2}68°+\cos^{2}68°)]$ = $\text{cot 17°}\text{tan 17°}$ [$\because(\sin^{2}68°+\cos^{2}68°)=1]$ = $\text{cot 17°}\frac{1}{\cot 17°}$ = $1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\sin 28° \sin 35° \sin 45° \sec 62° \sec 55°$?
Option 1: $2$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $\sqrt{2}$
Option 4: $\frac{1}2$
Question : What is the value of $\cos ^2 15°?$
Option 1: $(2+\sqrt{3})$
Option 2: $\frac{(2+\sqrt{3})}{4}$
Option 3: $\frac{(2+\sqrt{3})}{2}$
Option 4: $\frac{(1+\sqrt{3})}{2}$
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Option 1: $\frac{1}{\sqrt{13}}$
Option 2: $\frac{2}{\sqrt{13}}$
Option 3: 0
Option 4: $\frac{2}{3}$
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Option 1: $\sec\theta+\tan \theta$
Option 2: $\operatorname{cosec} \theta-\cot \theta$
Option 3: $\operatorname{cosec} \theta+\cot \theta$
Option 4: $\sec\theta-\tan \theta$
Question : What is the value of $\operatorname{cos}\left(-\frac{17 \pi}{3}\right)$?
Option 1: $1$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{1}{2}$
Option 4: $0$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile