Question : The value of $\frac{1}{\sin \theta}-\frac{\cot ^2 \theta}{1+\operatorname{cosec} \theta}$ is:
Option 1: 2
Option 2: 1
Option 3: –1
Option 4: 0
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $\frac{1}{\sin \theta}-\frac{\cot ^2 \theta}{1+\operatorname{cosec} \theta}$ = $\operatorname {cosec} \theta - \frac{\operatorname{cosec}^2\theta-1}{1+\operatorname{cosec} \theta}$ = $\operatorname {cosec}\theta-\frac{(\operatorname{cosec}\theta-1)(\operatorname{cosec}\theta+1)}{1+\operatorname{cosec} \theta}$ = $\operatorname{cosec}\theta-\operatorname{cosec}\theta+1$ = $1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $2 \cot \theta$
Option 4: $\operatorname{cosec} \theta+\cot \theta$
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Option 1: $2$
Option 2: $0$
Option 3: $1$
Option 4: $3$
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Option 1: $\frac{16}{25}$
Option 2: $\frac{40}{41}$
Option 3: $\frac{41}{40}$
Option 4: $\frac{31}{30}$
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{6}{5}$
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Option 1: $\frac{1}{41}$
Option 2: $\frac{43}{29}$
Option 3: $\frac{41}{29}$
Option 4: $\frac{1}{43}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile