Question : The value of $(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90})$ is:
Option 1: $\frac{1}{10}$
Option 2: $\frac{3}{5}$
Option 3: $\frac{3}{20}$
Option 4: $\frac{7}{20}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{20}$
Solution : $=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$ $=(\frac{1}{20}+\frac{1}{30})+(\frac{1}{42}+\frac{1}{56})+(\frac{1}{72}+\frac{1}{90})$ $=(\frac{3+2}{60})+( \frac{4+3}{168})+( \frac{5+4}{360})$ $=(\frac{1}{12})+( \frac{1}{24})+( \frac{1}{40})$ $=\frac{10+5+3}{120}$ $=\frac{18}{120}$ $=\frac{3}{20}$ Hence, the correct answer is $\frac{3}{20}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Option 1: $1 \frac{3}{10}$
Option 2: $2 \frac{7}{10}$
Option 3: $2 \frac{3}{7}$
Option 4: $1 \frac{3}{7}$
Question : The value of $\frac{3+8 \times 8 \div 8 \text { of } 8+7 \div 7 \times 2}{5 \div 5 \text { of } 4+3 \times 3 \div 3-3+2}$ is:
Option 1: $1 \frac{3}{5}$
Option 2: $2 \frac{2}{3}$
Option 3: $1 \frac{4}{7}$
Option 4: $2 \frac{3}{7}$
Question : If $3x+\frac{1}{5x}=7$, then what is the value of $\frac{5x}{(15x^{2}+15x+1)}?$
Option 1: $\frac{1}{5}$
Option 2: $\frac{1}{10}$
Option 3: $\frac{2}{5}$
Option 4: $10$
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Option 1: $\frac{3}{7}$
Option 2: $1\frac{1}{7}$
Option 3: $1$
Option 4: $2$
Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Option 1: $\frac{5}{7}$
Option 2: $\frac{3}{7}$
Option 3: $\frac{4}{7}$
Option 4: $\frac{2}{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile