Question : The value of $\frac{40-\frac{3}{4} \text { of } 32}{37-\frac{3}{4} \text { of }(34-6)}$ is:
Option 1: $\frac{1}{2}$
Option 2: $1$
Option 3: $-\frac{1}{2}$
Option 4: $0$
Correct Answer: $1$
Solution : $\frac{40-\frac{3}{4} \text { of } 32}{37-\frac{3}{4} \text { of }(34-6)}$ $=\frac{40-\frac{3}{4} \text { of } 32}{37-\frac{3}{4} \text { of }28}$ $=\frac{40-24}{37-21}$ $=\frac{16}{16}$ $=1$ Hence, the correct answer is $1$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{40+\frac{3}{4} \text { of } 32}{37+\frac{3}{4} \text { of }(34-6)}$ is:
Option 1: $1 \frac{3}{29}$
Option 2: $-1 \frac{3}{29}$
Option 3: $1 \frac{9}{29}$
Option 4: $2 \frac{3}{29}$
Question : What is the positive value of the following expression? $\sqrt{36 \div 15 \text { of } 2 \text { of }[25 \times 4 \div 4 \text { of }\{29-(8-11) \div(9 \times 5 \div 5 \text { of } 3)\}]}$
Option 1: $1 \frac{5}{6}$
Option 2: $1 \frac{1}{5}$
Option 3: $2 \frac{4}{5}$
Option 4: $2 \frac{3}{5}$
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Option 1: $\frac{9}{8}$
Option 2: $\frac{9}{4}$
Option 3: $\frac{15}{32}$
Option 4: $\frac{89}{4}$
Question : If $x^2-8x+1=0$, what is the value of $(x^2+\frac{1}{x^2})$?
Option 1: $18$
Option 2: $34$
Option 3: $40$
Option 4: $62$
Question : A student was asked to find the value of $\frac{\left(2 \frac{1}{3}+2 \frac{1}{2}-\frac{1}{6}\right) \div 2 \frac{1}{3} \times 5 \frac{2}{3} \div 1 \frac{2}{3} \text { of } 4 \frac{1}{4}}{3 \frac{1}{5} \div 4 \frac{1}{2} \text { of } 5 \frac{1}{3}+5 \frac{1}{3} \times \frac{3}{4} \div 2 \frac{2}{3}}$. His answer was $\frac{6}{7}$. What is the difference between the correct answer and his answer?
Option 1: $\frac{9}{14}$
Option 2: $\frac{5}{14}$
Option 3: $\frac{11}{49}$
Option 4: $\frac{6}{49}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile