Question : The value of $\frac{\sin \theta+\cos \theta-1}{\sin \theta-\cos \theta+1} \times \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$ is:
Option 1: -2
Option 2: 2
Option 3: -1
Option 4: 1
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : $\frac{\sin \theta+\cos \theta-1}{\sin \theta-\cos \theta+1} \times \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$ = $\frac{\sin \theta+\cos \theta-1}{\sin \theta-\cos \theta+1}\times\frac{\sin \theta-\cos \theta-1}{\sin \theta-\cos \theta-1} \times \sqrt{\frac{1+\sin \theta}{1-\sin \theta}\times\frac{1+\sin \theta}{1+\sin \theta}}$ = $\frac{(\sin \theta-1)^2-\cos^2 \theta}{(\sin \theta-\cos \theta)^2-1^2} \times \sqrt{\frac{(1+\sin \theta)^2}{1^2-\sin^2 \theta}}$ = $\frac{\sin^2 \theta+1-2\sin\theta-\cos^2 \theta}{\sin^2 \theta+\cos^2 \theta-2\sin\theta\cos\theta-1} \times \sqrt{\frac{(1+\sin \theta)^2}{\cos^2 \theta}}$ We know that, $\sin^2\theta+\cos^2\theta=1$ = $\frac{1-\cos^2 \theta+1-2\sin\theta-\cos^2 \theta}{1-2\sin\theta\cos\theta-1} \times \frac{1+\sin \theta}{\cos\theta}$ = $\frac{2-2\cos^2 \theta-2\sin\theta}{-2\sin\theta\cos\theta} \times \frac{1+\sin \theta}{\cos\theta}$ = $\frac{2(1-\cos^2 \theta-\sin\theta)}{-2\sin\theta\cos\theta} \times \frac{1+\sin \theta}{\cos\theta}$ = $\frac{\sin^2 \theta-\sin\theta}{-\sin\theta\cos\theta} \times \frac{1+\sin \theta}{\cos\theta}$ = $\frac{\sin \theta(\sin\theta-1)}{-\sin\theta\cos\theta} \times \frac{1+\sin \theta}{\cos\theta}$ = $\frac{(\sin\theta-1)}{-\cos\theta} \times \frac{1+\sin \theta}{\cos\theta}$ = $(\frac{\sin \theta}{-\cos\theta}+\frac{1}{\cos\theta}) \times (\frac{1}{\cos\theta}+\frac{\sin}{\cos\theta})$ = $(-\tan\theta+\sec\theta)\times(\sec\theta+\tan\theta)$ = $(-\tan^2\theta+\sec^2\theta)$ = 1 Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Option 1: $\frac{2 \sqrt{3}}{27}$
Option 2: $\frac{5 \sqrt{3}}{27}$
Option 3: $\frac{2 \sqrt{3}}{9}$
Option 4: $\frac{7 \sqrt{3}}{54}$
Question : If $\cos \theta+\cos ^2 \theta=1$, find the value of $\sqrt{\sin ^4 \theta+\cos ^2 \theta}$.
Option 1: $\sqrt{2} \cos \theta$
Option 2: $2 \operatorname{cos} \theta$
Option 3: $\sqrt{2} \operatorname{sin} \theta$
Option 4: $2 \operatorname{sin} \theta$
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Option 1: $ \frac{5}{\sqrt{34}} $
Option 2: $ \frac{5}{\sqrt{24}} $
Option 3: $ \frac{\sqrt{34}}{5} $
Option 4: $ \frac{\sqrt{24}}{5}$
Question : What is $\tan \frac{\theta}{2}$?
Option 1: $\frac{\cos \theta}{1-\sin \theta}$
Option 2: $\frac{\sin \theta}{1-\cos \theta}$
Option 3: $\frac{\cos \theta}{1-\cos \theta}$
Option 4: $\frac{\sin \theta}{1+\cos \theta}$
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Option 1: $\sqrt{2}\tan\theta$
Option 2: $-\sqrt{2}\cos\theta$
Option 3: $-\sqrt{2}\sin\theta$
Option 4: $\sqrt{2}\sin\theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile