Question : What is the third proportion of $2 \sqrt{3}$ and $6 \sqrt{5}$?
Option 1: $50 \sqrt{6}$
Option 2: $40 \sqrt{3}$
Option 3: $20 \sqrt{6}$
Option 4: $30 \sqrt{3}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $30 \sqrt{3}$
Solution : Let the third proportion be $x$. $2 \sqrt{3}:6 \sqrt{5}::6 \sqrt{5}:x$ ⇒ $\frac{2 \sqrt{3}}{6 \sqrt{5}}=\frac{6 \sqrt{5}}{x}$ ⇒ $x=\frac{180}{2 \sqrt{3}}$ $\therefore x=30 \sqrt{3}$ Hence, the correct answer is $30 \sqrt{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : What is the fourth proportional of $3 \sqrt{5}, 5 \sqrt{8}$, and $3 \sqrt{10}$?
Option 1: $10 \sqrt{5}$
Option 2: $40 \sqrt{2}$
Option 3: $30$
Option 4: $20$
Question : Which of the following is true?
Option 1: $\sqrt 5 + \sqrt 3 > \sqrt 6 + \sqrt 2$
Option 2: $\sqrt 5 + \sqrt 3 < \sqrt 6 + \sqrt 2$
Option 3: $\sqrt 5 + \sqrt 3 = \sqrt 6 + \sqrt 2$
Option 4: $(\sqrt 5 + \sqrt 3 ) (\sqrt 6 + \sqrt 2 )= 1$
Question : The ratio of three numbers is 6 : 5 : 9. If 20% of the first number is 30, then what would be 50% of the difference between the third and second numbers?
Option 1: 40
Option 2: 50
Option 3: 30
Option 4: 45
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Option 1: $\frac{2 \sqrt{6}-6}{5}$
Option 2: $\frac{4 \sqrt{6}-6}{5}$
Option 3: $\frac{4 \sqrt{6}-6}{3}$
Option 4: $\frac{4 \sqrt{3}-6}{5}$
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Option 1: $1$
Option 2: $2$
Option 3: $\sqrt{3}$
Option 4: $\sqrt{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile