Question : What is the value of $\frac{3}{5}(\sec^2 20^\circ - \cot^2 70^\circ)$?
Option 1: $\frac{4}{3}$
Option 2: $\frac{5}{3}$
Option 3: $\frac{2}{5}$
Option 4: $\frac{3}{5}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{5}$
Solution : $\frac{3}{5}(\sec^2 20^\circ - \cot^2 70^\circ)$ $=\frac{3}{5}(\sec^2 20^\circ - \tan^2 20^\circ)$ [By using: $\tan\theta = \cot(90^\circ-\theta)$] $=\frac{3}{5}\times1$ [We know that $\sec^2 \theta- \tan^2 \theta = 1$] $=\frac{3}{5}$ Hence, the correct answer is $\frac{3}{5}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The value of $\frac{\sec 54^{\circ}}{\operatorname{cosec} 36^{\circ}}+\frac{\tan 70^{\circ}}{\cot 20^{\circ}}-2 \tan 45^{\circ}$ is equal to:
Option 1: 2
Option 2: 0
Option 3: 1
Option 4: 3
Question : If $\frac{x-x\tan^{2}30^{\circ}}{1+\tan^{2}30^{\circ}}=\sin^{2}30^{\circ}+4\cot^{2}45^{\circ}-\sec^{2}60^{\circ}$, then value of $x$ is:
Option 1: $\frac{1}{4}$
Option 2: $\frac{1}{5}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{\sqrt3}$
Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
Question : What is the value of $\frac{3 \cos 62^{\circ}}{\sin 28^{\circ}}-\frac{2 \tan 34^{\circ}}{\cot 56^{\circ}} ?$
Option 1: 3
Option 2: 1
Option 3: 5
Option 4: 4
Question : If $\sec \beta+\tan \beta=2$, then what is the value of $\cot \beta$?
Option 1: $\frac{5}{3}$
Option 2: $\frac{3}{5}$
Option 3: $\frac{4}{3}$
Option 4: $\frac{3}{4}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile