Question : What is the value of the given expression if $3\cot A=\frac{7}{3}$? $\frac{3 \cos A+2 \sin A}{3 \cos A-2 \sin A}$
Option 1: $\frac{2}{3}$
Option 2: $\frac{1}{3}$
Option 3: $13$
Option 4: $1$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $13$
Solution : Given: $3\cot A=\frac{7}{3}$ To find: $\frac{3 \cos A+2 \sin A}{3 \cos A-2 \sin A}$ Dividing numerator and denominator by $\sin A$, we get: $= \frac{\frac{3 \cos A}{\sin A}+\frac{2 \sin A}{\sin A}}{\frac{3 \cos A}{\sin A}-\frac{2 \sin A}{\sin A}}$ $= \frac{3\cot A+2}{3\cot A-2}$ Putting $3\cot A=\frac{7}{3}$ $= \frac{\frac{7}{3}+2}{\frac{7}{3}-2}$ $= \frac{13}{1}= 13$ Hence, the correct answer is $13$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Option 1: $-\frac{13}{25}$
Option 2: $-\frac{25}{7}$
Option 3: $\frac{25}{8}$
Option 4: $\frac{13}{21}$
Question : If $\sin A=\frac{5}{13}$ and $7 \cot B=24$, then the value of $(\sec A \cos B)(\operatorname{cosec} B \tan A)$ is:
Option 1: $\frac{65}{42}$
Option 2: $\frac{13}{14}$
Option 3: $\frac{15}{13}$
Option 4: $\frac{13}{7}$
Question : If $\frac{21\cos A+3\sin A}{3\cos A+4\sin A}=2$, then find the value of cot A.
Option 1: $\frac{9}{11}$
Option 2: $\frac{11}{9}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{11}{10}$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Question : Simplify: $\frac{\cos A}{1+\tan A}-\frac{\sin A}{1+\cot A}$
Option 1: $\tan A$
Option 2: $\cos A-\sin A$
Option 3: $\cos A \sin A$
Option 4: $\cos A+\sin A$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile