Question : Which is the largest among the numbers $\sqrt{5},\ 3\sqrt{7}$ and $4\sqrt{13}$.
Option 1: $\sqrt{5}$
Option 2: $3\sqrt{7}$
Option 3: $4\sqrt{13}$
Option 4: All are equal
Correct Answer: $4\sqrt{13}$
Solution : To find: The largest among the numbers $\sqrt{5},\ 3\sqrt{7}$ and $4\sqrt{13}$. Here, $\sqrt{5}=\sqrt{5}$ $3\sqrt{7}=\sqrt{3×3×7}=\sqrt{63}$ $4\sqrt{13}=\sqrt{4×4×13}=\sqrt{208}$ Hence, the largest number among them is $4\sqrt{13}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Which is the largest among the numbers $\sqrt{5},\ 3\sqrt{7}$, and $4\sqrt{13}$.
Option 4: $\text {All are equal}$
Question : Which value among $3^{200},2^{300},$ and $7^{100}$ is the largest?
Option 1: $3^{200}$
Option 2: $2^{300}$
Option 3: $7^{100}$
Option 4: All are equal.
Question : What is the value of the positive square root of $(69+28\sqrt{5})$?
Option 1: $(7+2\sqrt{5})$
Option 2: $(7-2\sqrt{5})$
Option 3: $(2+7\sqrt{5})$
Option 4: $(2-7\sqrt{5})$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Option 1: 5
Option 2: 4
Option 3: 3
Option 4: 2
Question : The smallest among $\sqrt[6]{12},\sqrt[3]{4},\sqrt[4]{5},\sqrt3$ is:
Option 1: $\sqrt[6]{12}$
Option 2: $\sqrt[3]{4}$
Option 3: $\sqrt3$
Option 4: $\sqrt[4]{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile