Question : $\text {Find the value of }(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2 \text {. }$
Option 1: 4
Option 2: 0
Option 3: 2
Option 4: 1
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : $(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$ Using $(a\pm b)^2=a^2+b^2\pm2ab$, we get $(\sin^2 \theta + \cos^2 \theta +2\sin \theta \cos \theta) + (\sin^2 \theta + \cos^2 \theta -2\sin \theta \cos \theta)$ $= 2(\sin^2 \theta + \cos^2 \theta)$ Since $\sin^2 \theta + \cos^2 \theta = 1$, $(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2 = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Option 1: $0$
Option 2: $2$
Option 3: $1$
Option 4: $\frac{1}{\sqrt{2}}$
Question : If $\cos \theta+\cos ^2 \theta=1$, find the value of $\sqrt{\sin ^4 \theta+\cos ^2 \theta}$.
Option 1: $\sqrt{2} \cos \theta$
Option 2: $2 \operatorname{cos} \theta$
Option 3: $\sqrt{2} \operatorname{sin} \theta$
Option 4: $2 \operatorname{sin} \theta$
Question : If $\sin \theta +\sin ^{2}\theta =1$, then the value of $\cos ^{2}\theta +\cos ^{4}\theta$ is:
Option 1: 2
Option 2: 4
Option 3: 0
Question : If $\frac{(3 \sin \theta-\cos \theta)}{(\cos \theta+\sin \theta)}=1$, then the value of $\cot \theta$ is:
Option 1: 3
Option 3: 1
Option 4: 2
Question : For any acute angle $\theta, \sin \theta+\sin^2 \theta=1$, then the value of $\cos^2 \theta+\cos^4 \theta=$___________.
Option 1: 0
Option 2: 1
Option 4: –1
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile