21 Views

Question : ABCD is a square. Draw an equilateral $\triangle $PBC on side BC considering BC is a base and an equilateral $\triangle $QAC on diagonal AC considering AC is a base. Find the value of $\frac{\text{area of $\triangle PBC$}}{\text{area of $\triangle QAC$}}$.

Option 1: $\frac{1}{2}$

Option 2: $1$

Option 3: $\frac{1}{3}$

Option 4: $\frac{1}{4}$


Team Careers360 20th Jan, 2024
Answer (1)
user-img
Team Careers360 22nd Jan, 2024

Correct Answer: $\frac{1}{2}$


Solution :
Let the side length of the square ABCD as $a$. 
The area of an equilateral triangle with $s$ as side length $=\frac{\sqrt{3}}{4}s^2$
The area of $\triangle $PBC,
$=\frac{\sqrt{3}}{4}a^2$
The area of $\triangle $QAC,
$=\frac{\sqrt{3}}{4}(a\sqrt{2})^2 = \frac{\sqrt{3}}{4} \times 2a^2 = \frac{\sqrt{3}}{2}a^2$
So, $\frac{\text{Area of $\triangle$PBC}}{\text{Area of $\triangle$QAC}}=\frac{\frac{\sqrt{3}}{4}a^2}{\frac{\sqrt{3}}{2}a^2} = \frac{1}{2}$
Hence, the correct answer is $\frac{1}{2}$.

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books