Hello,
Given eqn is,
cos 2x + k ( sin x ) = 2k - 7
So, 1 - 2 sin ^ 2 x + k ( sin x ) = 2k - 7
So, 2 sin ^ 2 x - k ( sin x ) + 2k - 8 = 0
So, 2 sin ^ 2 x - k ( sin x ) + 2 ( k - 4 ) = 0............. ( 1 )
The eqn ( 1 ) is a quadratic eqn and after solving it, we get,
sin x = ( k - 4 ) / 2 and 2
SInce, value of sin x can never be greater than 1, sin x is not equal to 2
So, sin x = ( k - 4 ) / 2
Since the value of sin x ranges from -1 to 1,
-1 ≤ ( k - 4 ) / 2 ≤ 1
So, 2 ≤ k ≤ 6
So, the correct option is Option D.
Best Wishes.
The correct answer is option d
When we solve the above equation in terms of quadratic form of sin x, then the value of k obtained solved within the range [-1,1] yields the result 2<k<6
Question : If A : B = 2 : 3, B : C = 6 : 7, C : D = 14 : 3, then find A : B : C : D.
Option 1: 12 : 12 : 4 : 6
Option 2: 7 : 2 : 10 : 4
Option 3: 8 : 12 : 14 : 3
Option 4: 8 : 5 : 14 : 6
Question : Simplify: $(2 a-3 b-c)^2-(a+2 b+c)^2$
Option 1: $3 a^2+5 b^2-16 a b+2 b c-8 a c$
Option 2: $3 a^2+5 b^2-8 a b+2 b c-6 a c$
Option 3: $3 a^2+5 b^2-16 a b-6 a c$
Option 4: $3 a^2+5 b^2-16 a b+2 b c-6 a c$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile