Question : Divide INR 1488 among X, Y, and Z. If the shares are in the ratio X : Y = 4 : 5 and Y : Z = 7 : 6, then find out the share of Z.
Option 1: INR 460
Option 2: INR 450
Option 3: INR 470
Option 4: INR 480
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: INR 480
Solution : INR 1488 is divided among X, Y, and Z. ⇒ X + Y + Z = 1488 .......(1) Given, X : Y = 4 : 5 and Y : Z = 7 : 6 ⇒ X = $\frac{4}{5}$Y and Y = $\frac{7}{6}$Z ⇒ X = $\frac{4}{5}\times \frac{7}{6}$Z = $\frac{14}{15}$Z Putting in (1), we get, $\frac{14}{15}$Z + $\frac{7}{6}$Z + Z = 1488 ⇒ $\frac{1}{30}$(28Z + 35Z + 30Z) = 1488 ⇒ 93Z = 44640 ⇒ Z = 480 Hence, the correct answer is INR 480.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Option 1: $\frac{1}{3}(x+y+z)$
Option 2: $(x+y+z)$
Option 3: $\frac{1}{4}(x+y+z)$
Option 4: $\frac{1}{2}(x+y+z)$
Question : x, y, and z are 3 values, such that x + y = 12, y + z = 17 and z + x = 19. What is the average of x, y, and z?
Option 1: 10
Option 2: 8
Option 3: 6
Option 4: 4
Question : If $x(x+y+z)=20$, $y(x+y+z)=30$, and $z(x+y+z)=50$, then the value of $2(x+y+z)$ is:
Option 1: 20
Option 2: –10
Option 3: 15
Option 4: 18
Question : Rs. 13000 is divided among X, Y, and Z such that 2 times X's share is equal to 3 times Y's share which is equal to 4 times Z's share. What is the share of Y?
Option 1: Rs. 3200
Option 2: Rs. 4800
Option 3: Rs. 5600
Option 4: Rs. 4000
Question : If $x: y: z=3: 4: 5$, then what will be the ratio of $\left(\frac{x}{y}\right):\left(\frac{y}{z}\right):\left(\frac{z}{x}\right)$?
Option 1: 49 : 37 : 100
Option 2: 45 : 48 : 100
Option 3: 41 : 37 : 100
Option 4: 37 : 47 : 100
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile