To find derivatives using the first principle, we use the definition:
$f^{\prime}(x)=\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$Steps to Find the Derivative Using the First Principle:1. Substitute $f(x+h)$ into the formula.2. Find $f(x+h)-f(x)$.3. Simplify the expression and divide by $h$.4. Apply the limit $h \rightarrow 0$.
Example: $f(x)=x^2$
$f^{\prime}(x)=\lim\limits_{h \rightarrow 0} \frac{(x+h)^2-x^2}{h}=\lim\limits_{h \rightarrow 0} \frac{x^2+2 x h+h^2-x^2}{h}=\lim\limits_{h \rightarrow 0}(2 x+h)=2 x$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile