Question : Find the mean proportion between $(6+\sqrt{8})$ and $(3-\sqrt{2})$.
Option 1: $2 \sqrt{12}$
Option 2: $\sqrt{14}$
Option 3: $(6-\sqrt{8})$
Option 4: $\sqrt{15}-7$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\sqrt{14}$
Solution : The mean proportion between $(6+\sqrt{8})$ and $(3-\sqrt{2})$ is: $\sqrt{(6+\sqrt{8})(3-\sqrt{2})}$ $=\sqrt{18-6\sqrt{2}+3\sqrt{8}-\sqrt{16}}$ $=\sqrt{18-6\sqrt{2}+6\sqrt{2}-4}$ $=\sqrt{14}$ Hence, the correct answer is $\sqrt{14}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Option 1: $2-2 \sqrt{2}$
Option 2: $4+2 \sqrt{2}$
Option 3: $4-2 \sqrt{2}$
Option 4: $2+2 \sqrt{2}$
Question : If the LCM and the HCF of two numbers are 12 and 2 respectively, then find the mean proportional of these numbers.
Option 1: $2 \sqrt{6}$
Option 3: $2$
Option 4: $\sqrt{6}$
Question : Two concentric circles of radii 15 cm and 13 cm are given. Find the length of the chord of the larger circle which touches the smaller circle.
Option 1: $22\sqrt{7}$
Option 2: $8\sqrt{14}$
Option 3: $4\sqrt{14}$
Option 4: $12\sqrt{7}$
Question : The arithmetic mean of the following numbers 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7 is:
Option 1: 4
Option 2: 5
Option 3: 14
Option 4: 20
Question : The mean proportion between 7 and 112 is:
Option 1: 42
Option 2: 28
Option 3: 21
Option 4: 14
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile