17 Views

Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.

Option 1: $\sqrt{\frac{1+\sin 2 A}{\cos 2 A}}$

Option 2: $\sqrt{\frac{1-\sin 2 A}{\cos 2 A}}$

Option 3: $\sqrt{\frac{1+\sin A}{\cos A}}$

Option 4: $\sqrt{\frac{1-\sin A}{\cos A}}$


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $\sqrt{\frac{1-\sin 2 A}{\cos 2 A}}$


Solution : Given expression,
$\sqrt{\frac{1-\tan A}{1+\tan A}}$
= $\sqrt{\frac{1-\frac{\sin A}{\cos A}}{1+\frac{\sin A}{\cos A}}}$
= $\sqrt{\frac{\cos A-\sin A}{\cos A+\sin A}}$
Multiplying and dividing by $\sqrt{\cos A-\sin A}$
$\sqrt{\frac{\cos A-\sin A}{\cos A+\sin A}}\times\sqrt{\frac{\cos A-\sin A}{\cos A-\sin }}$
= $\sqrt{\frac{(\cos A-\sin A)^2}{(\cos A+\sin A)(\cos A-\sin A)}}$
= $\sqrt{\frac{\sin^2A+\cos^2A-2\sin A \cos A}{\cos^2 A-\sin^2 A}}$
We know, $\sin^2\theta+\cos^2\theta=1,\ \sin2\theta=2\sin\theta\cos\theta\text{ and }\cos2\theta=\cos^2 \theta-\sin^2 \theta$
= $\sqrt{\frac{1-\sin2A}{\cos2A}}$
Hence, the correct answer is $\sqrt{\frac{1-\sin2A}{\cos2A}}$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Exam Date: 3 Jan, 2026 - 20 Jan, 2026
Application Date: 10 Jan, 2026 - 9 Feb, 2026
Application Date: 11 Dec, 2025 - 11 Jan, 2026
Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books