Question : Find the value of $\cot ^2B- \operatorname{cosec}^2B$ for $ 0<B<90^{\circ}.$
Option 1: $1$
Option 2: $2$
Option 3: $–1$
Option 4: $–2$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $–1$
Solution : Given: $\cot^2 B-\operatorname{cosec}^2 B$ $=\frac{\cos^{2} B}{\sin ^{2} B}- \frac{1}{\sin^{2} B}$ $= \frac{\cos^{2}-1}{\sin ^{2} B}$ $= \frac{-\sin ^{2} B}{\sin ^{2} B}$ $=-1$ Hence, the correct answer is $-1$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Option 1: $2$
Option 2: $0$
Option 3: $1$
Option 4: $3$
Question : If $0^{\circ}< A< 90^{\circ}$, then the value of $\tan ^{2}A+\cot^{2}A-\sec^{2}A \operatorname{cosec}^{2}A$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –2
Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 4: $0$
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $2 \cot \theta$
Option 4: $\operatorname{cosec} \theta+\cot \theta$
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Option 1: $\frac{7}{6 \sqrt{3}}$
Option 2: $\frac{\sqrt{3}}{6}$
Option 3: $\frac{7}{6}$
Option 4: $\frac{7}{2 \sqrt{3}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile