Question : Find the volume of the largest right circular cone that can be cut out from a cube whose edge is $3 \frac{1}{2}$ cm, correct to two places of decimals (use $\pi=\frac{22}{7}$).
Option 1: $13.21 \mathrm{~cm}^3$
Option 2: $21.31 \mathrm{~cm}^3$
Option 3: $11.23 \mathrm{~cm}^3$
Option 4: $12.13 \mathrm{~cm}^3$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $11.23 \mathrm{~cm}^3$
Solution : Given: The edge of the cube = $3\frac{1}{2}=\frac{7}{2}$ cm, this will be the altitude of the cone, $h$. Now, the radius of the circular cone $=r=\frac{\frac{7}{2}}{2}=\frac{7}{4}$ The volume of cone, V = $\frac{1}{3}\pi r^2h$ ⇒ V = $\frac{1}{3}×\frac{22}{7}×\frac{7}{4}×\frac{7}{4}×\frac{7}{2}$ ⇒ V = $\frac{539}{48}$ ⇒ V = 11.23 cm3 Hence, the correct answer is 11.23 cm3.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The diameter of a sphere is 14 cm, then the volume of this sphere is (use $\pi=\frac{22}{7}$ ):
Option 1: $1437 \frac{1}{3} \mathrm{~cm}^3$
Option 2: $1683 \frac{1}{3} \mathrm{~cm}^3$
Option 3: $1521 \frac{2}{3} \mathrm{~cm}^3$
Option 4: $2125 \frac{1}{3} \mathrm{~cm}^3$
Question : If a right circular cone of height 24 cm has the circumference of its base 42$\pi$ cm, then the volume of the cone is: (Use $\pi=\frac{22}{7}$)
Option 1: 15211 cm3
Option 2: 11088 cm3
Option 3: 12034 cm3
Option 4: 21011 cm3
Question : The area of a circle whose radius is the diagonal of a square whose area is $4\;\mathrm{cm^2}$ is:
Option 1: $16\pi\;\mathrm{cm^2}$
Option 2: $4\pi\;\mathrm{cm^2}$
Option 3: $6\pi\;\mathrm{cm^2}$
Option 4: $8\pi\;\mathrm{cm^2}$
Question : Find the volume of a solid sphere whose diameter is 42 cm. (Use $\pi=\frac{22}{7}$)
Option 1: 38807 cm3
Option 2: 38808 cm3
Option 3: 38806 cm3
Option 4: 38805 cm3
Question : The curved surface area of a right circular cone of diameter $42 \ \text{cm}$ is $990 \ \text{cm}^2$. What is the slant height (in${\ \text{cm}})$ of the cone? [Use $\pi=\frac{22}{7}$]
Option 1: 10
Option 2: 15
Option 3: 24
Option 4: 12
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile