Question : Given that $x$ varies directly as $y$ and $x=45$ when $y=9$. What is the value of $x$ when $y=50$?
Option 1: 225
Option 2: 190
Option 3: 175
Option 4: 250
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 250
Solution : Since $x$ varies directly as $y$. Such that $x = ky$, where $k$ is the constant of variation. Given that $x = 45$ when $y = 9$, $45 = k × 9$ $k = \frac{45}{9} = 5$ The value of $x$ when $y = 50$, $x = k × y = 5 × 50 = 250$ Hence, the correct answer is $250$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Option 1: $2 \sqrt{3}$
Option 2: $\sqrt{3}$
Option 3: $4 \sqrt{3}$
Option 4: $4 \sqrt{2}$
Question : Simplify the given expression $\frac{(x^3-y^3)(x+y)}{x^2+x y+y^2}$.
Option 1: $x - y$
Option 2: $x^2-y^2$
Option 3: $x + y$
Option 4: $x^2+y^2$
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Option 1: $\frac{1}{3}(x+y+z)$
Option 2: $(x+y+z)$
Option 3: $\frac{1}{4}(x+y+z)$
Option 4: $\frac{1}{2}(x+y+z)$
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Option 1: –1
Option 2: 0
Option 3: 1
Option 4: 2
Question : What is the value of $\frac{4x^2+9y^2+12xy}{144}$?
Option 1: $(\frac{x}{3} + \frac{y}{4})^2$
Option 2: $(\frac{x}{3} + y)^2$
Option 3: $(\frac{x}{4} + \frac{y}{6})^2$
Option 4: $(\frac{x}{6} + \frac{y}{4})^2$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile