Question : If 40% of $\frac{4}{5}$ of $\frac{3}{4}$of a number is 48, then what is 1% of the same number?
Option 1: 20
Option 2: 2
Option 3: 10
Option 4: 1
Correct Answer: 2
Solution : Let the number be $x$. According to the question, 40% of $\frac{4}{5}$ of $\frac{3}{4}$ of $x$ = 48 ⇒ $x=48\times \frac{100}{40}\times\frac{5}{4} \times \frac{4}{3}$ ⇒ $x = 200$ So, 1% of 200 = 2 Hence, the correct answer is 2.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $A+\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=\frac{9}{10}$, then the value of A is:
Option 1: $\frac{1}{5}$
Option 2: $\frac{3}{10}$
Option 3: $\frac{2}{5}$
Option 4: $\frac{1}{10}$
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Option 1: $2 \frac{3}{20}$
Option 2: $1\frac{2}{20}$
Option 3: $1 \frac{3}{20}$
Option 4: $1 \frac{7}{20}$
Question : If $2A=3B$, then what is the value of $\frac{A+B}{A}$?
Option 1: $\frac{5}{4}$
Option 2: $\frac{2}{3}$
Option 3: $\frac{5}{2}$
Option 4: $\frac{5}{3}$
Question : If $a-\frac{1}{a-5}=10$, then the value of $(a-5)^3-\frac{1}{(a-5)^3}$ is:
Option 1: 140
Option 2: 70
Option 3: 100
Option 4: 120
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Option 1: $5 \sqrt{5}$
Option 2: $4 \sqrt{5}$
Option 3: $2 \sqrt{5}$
Option 4: $3 \sqrt{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile