Question : If $\sin \theta=\frac{6}{10}$ and $\cos\theta = \frac{8}{10}$, then $\sin2\theta =$ ______.
Option 1: $\frac{10}{8}$
Option 2: $\frac{12}{10}$
Option 3: $\frac{16}{10}$
Option 4: $\frac{24}{25}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{24}{25}$
Solution : Given, $\sin \theta=\frac{6}{10}$ and $\cos\theta = \frac{8}{10}$ $\sin2\theta =2\sin\theta\cos\theta$ ⇒ $\sin2\theta = 2\times \frac{6}{10}\times\frac{8}{10}$ ⇒ $\sin\theta = 2\times \frac{3}{5}\times \frac{4}{5}$ ⇒ $\sin2\theta = \frac{24}{25}$ Hence, the correct answer is $\frac{24}{25}$.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : If $\cos\theta - \sin\theta =0$, then $(\sin^8\theta+\cos^8\theta)$ is:
Option 1: $\frac{1}{8}$
Option 2: $ \frac{1}{4}$
Option 3: $\frac{1}{6}$
Option 4: $\frac{1}{2}$
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Option 1: $\frac{2}{5}$
Option 2: $\frac{1}{5}$
Option 3: $\frac{16}{25}$
Option 4: $\frac{3}{5}$
Question : If $5\tan\theta=4$, then $\frac{5\sin\theta-3\cos\theta}{5\sin\theta+2\cos\theta}$ is equal to:
Option 1: $\frac{2}{3}$
Option 2: $\frac{1}{4}$
Option 4: $\frac{1}{3}$
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Option 1: $\frac{1}{3}$
Option 2: $\frac{4}{3}$
Option 3: $\frac{2}{3}$
Option 4: $\frac{5}{3}$
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Option 1: $\frac{1}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 2: $2\left(\sin ^2 \theta-\cos ^2 \theta\right)$
Option 3: $\frac{2}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 4: $\sin ^2 \theta-\cos ^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile