Question : If $ax+by=1$ and $bx+ay=\frac{2ab}{a^{2}+b^{2}}$, then $(x^{2}+y^{2})(a^{2}+b^{2})$ is equal to:
Option 1: 1
Option 2: 2
Option 3: 0.5
Option 4: 0
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : $ax+by=1$ ---------------------------------------(1) $bx+ay=\frac{2ab}{a^{2}+b^{2}}$ -----------------------------------(2) On dividing equation (1) by (2), we get, ⇒ $\frac{ax+by}{bx+ay}=\frac{a^{2}+b^{2}}{2ab}$ ⇒ $2a^{2}xb+2ab^{2}y=a^{2}bx+b^{3}x+a^{3}y+ab^{2}y$ ⇒ $a^{2}xb+ab^{2}y=b^{3}x+a^{3}y$ ⇒ $a^{2}xb-b^{3}x=a^{3}y-ab^{2}y$ ⇒ $x(a^{2}b-b^{3})=y(a^{3}-ab^{2})$ ⇒ $\frac{x}{y}=\frac{(a^{3}-ab^{2})}{(a^{2}b-b^{3})}$ ⇒ $\frac{x}{y}=\frac{a(a^{2}-b^{2})}{b(a^{2}-b^{2})}$ ⇒ $\frac{x}{y}=\frac{a}{b}$ ---------------------------------(3) Putting the value of $(x,y)$ from equation (3) in equation (1), we get, ⇒ $y=\frac{b}{a^{2}+b^{2}}$ ⇒ $x=\frac{a}{a^{2}+b^{2}}$ ⇒ $x^{2}+y^{2}=\frac{a^{2}}{(a^{2}+b^{2})^{2}}+\frac{b^{2}}{(a^{2}+b^{2})^{2}}$ ⇒ $x^{2}+y^{2}=\frac{1}{(a^{2}+b^{2})}$ ⇒ $(x^{2}+y^{2})(a^{2}+b^{2})=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a^{2}=by+cz$, $b^{2}=cz+ax$, $c^{2}=ax+by$, then the value of $\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}$ is:
Option 1: $1$
Option 2: $a+b+c$
Option 3: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
Option 4: $0$
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Option 1: $- \frac{7}{3}$
Option 2: $\frac{7}{3}$
Option 3: $\frac{3}{7}$
Option 4: $-\frac{3}{7}$
Question : If $x^2+y^2+2 y+4 x+5=0$, then $\frac{x+y}{x-y}=$______.
Option 1: $-3$
Option 2: $\frac{1}{3}$
Option 3: $-1$
Option 4: $3$
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Option 2: 0
Option 3: 2
Option 4: 3
Question : If $x+y+z=1, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1,$ and $xyz=-1$, then $x^3+y^3+z^3 $ is equal to:
Option 1: –1
Option 2: 1
Option 3: –2
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile