Question : If $\text{a}= {\sqrt{2}+1}$ and $\text{b} = {\sqrt{2}–1}$, then the value of $\frac{1}{a+1}+\frac{1}{b+1}$ will be:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –1
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : Given: $\text{a}= {\sqrt{2}+1}$ and $\text{b} = {\sqrt{2}–1}$ $\frac{1}{a+1}+\frac{1}{b+1}$ $= \frac{1}{(\sqrt{2}+1)+1}+\frac{1}{(\sqrt{2}–1)+1}$ $= \frac{1}{(\sqrt{2}+2)}+\frac{1}{\sqrt{2}}$ $=\frac{1}{\sqrt{2}}[\frac{1}{(1+\sqrt{2})}+1]$ $=\frac{1}{\sqrt{2}}[\frac{(1–\sqrt{2})}{(1–2)}+1]$ $=\frac{1}{\sqrt{2}}[\sqrt{2}–1+1]$ $=\frac{1}{\sqrt{2}}×\sqrt{2}$ $= 1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Option 1: $a+1$
Option 2: $\frac{1}{2}(a+1)$
Option 3: $\frac{1}{2}(a–1)$
Option 4: $a–1$
Question : If $a=\frac{1}{a - 5}(a>0)$, then the value of $a+\frac{1}{a}$ is:
Option 1: $\sqrt{29}$
Option 2: $–\sqrt{27}$
Option 3: $-\sqrt{29}$
Option 4: $\sqrt{27}$
Question : If $a = 64$ and $b = 289$, then the value of $\sqrt{\sqrt{\sqrt{a}+\sqrt{b}}-\sqrt{\sqrt{b}-\sqrt{a}}}$ is:
Option 1: $2^{\frac{1}{2}}$
Option 2: $2$
Option 3: $4$
Option 4: $–1$
Question : $\frac{1}{\sqrt a}-\frac{1}{\sqrt b}=0$, then the value of $\frac{1}{a}+\frac{1}{ b}$ is:
Option 1: $\frac{1}{\sqrt{ab}}$
Option 2: $\sqrt{ab}$
Option 3: $\frac{2}{\sqrt{ab}}$
Option 4: $\frac{1}{2\sqrt{ab}}$
Question : If $x=\frac{4\sqrt{ab}}{\sqrt a+ \sqrt b}$, then what is the value of $\frac{x+2\sqrt{a}}{x-2\sqrt a}+\frac{x+2\sqrt{b}}{x-2\sqrt b}$(when $a\neq b$)?
Option 2: 2
Option 3: 4
Option 4: $\frac{(\sqrt a+\sqrt b)}{(\sqrt a - \sqrt b)}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile