18 Views

Question : If $\frac{(a+b+c)}{2}=16$ and $2ab+2 bc+2ca=120$ ,then what is the value of $4a^2+4b^2+4c^2$?

Option 1: 2828

Option 2: 3368

Option 3: 3616

Option 4: 3056


Team Careers360 20th Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: 3616


Solution : Given: $\frac{(a+b+c)}{2}=16$
$⇒ a+b+c=32$
Also given $2ab+2 bc+2ca=120$
We know that, $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
Putting the values we get:
⇒ $(32)^2=a^2+b^2+c^2+120$
⇒ $1024-120=a^2+b^2+c^2$
⇒ $a^2+b^2+c^2=904$
$\therefore 4(a^2+b^2+c^2)=4\times904=3616$
Hence, the correct answer is 3616.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books