Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Option 1: 8
Option 2: 12
Option 3: 4
Option 4: 6
Correct Answer: 6
Solution : Given: $x^2-x y+y^2=7$ -----------(i) Also, $x^4+x^2 y^2+y^4=133$ ⇒ $(x^2-x y+y^2)(x^2+x y+y^2) = 133$ ⇒ $7(x^2+x y+y^2) = 133$ ⇒ $x^2+x y+y^2 = 19$ ------------(ii) Subtracting (i) from (ii), $2xy = 19-7$ ⇒ $xy = 6$ Hence, the correct answer is 6.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Option 1: $8$
Option 2: $7$
Option 3: $-9$
Option 4: $-6$
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Option 1: –8
Option 2: 4
Option 3: –4
Option 4: 12
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Option 1: 7
Option 2: 9
Option 3: 6
Option 4: 8
Question : If $x^2+8 y^2+12 y-4 x y+9=0$, then the value of $(7 x+8 y)$ is:
Option 1: –33
Option 3: 33
Option 4: –9
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Option 1: 2
Option 2: 0
Option 3: 1
Option 4: 3
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile