18 Views

Question : If $\left(x+\frac{1}{x}\right)=5 \sqrt{2}$, and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right) ?$

Option 1: $22970 \sqrt{23}$

Option 2: $23030 \sqrt{23}$

Option 3: $23060 \sqrt{23}$

Option 4: $22960 \sqrt{23}$


Team Careers360 15th Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: $23030 \sqrt{23}$


Solution : Given, $\left(x+\frac{1}{x}\right)=5 \sqrt{2}$
Squaring both sides, we get,
$\left(x+\frac{1}{x}\right)^2=(5 \sqrt{2})^2$
⇒ $x^2+\frac{1}{x^2}+2\times x\times \frac{1}{x}=25\times 2$
⇒ $x^2+\frac{1}{x^2}+2=50$
⇒ $x^2+\frac{1}{x^2}=50-2$
⇒ $x^2+\frac{1}{x^2}=48$
Subtracting 2 from both sides, we get,
⇒ $(x-\frac{1}{x})^2=48-2$
⇒ $(x-\frac{1}{x})^2=46$
⇒ $(x-\frac{1}{x})=\sqrt{46}$
Now consider, $\left(x^6-\frac{1}{x^6}\right)$
We know, $a^2-b^2=(a-b)(a+b)$
$=(x^3+\frac{1}{x^3})(x^3-\frac{1}{x^3})$
Also, $a^3+b^3=(a+b)(a^2-ab+b^2)$ and $a^3-b^3=(a-b)(a^2+ab+b^2)$
$=[(x+\frac{1}{x})(x^2-x\times\frac{1}{x}+\frac{1}{x^2})][(x-\frac{1}{x})(x^2+x\times\frac{1}{x}+\frac{1}{x^2})]$
$=(x+\frac{1}{x})(x^2+\frac{1}{x^2}-1)(x-\frac{1}{x})(x^2+\frac{1}{x^2}+1)$
$=(5\sqrt2)(48-1)(\sqrt{46})(48+1)$
$=5\sqrt2\times 47\times \sqrt{46}\times 49$
$=11515\sqrt{2\times 46}$
$=11515\times2\sqrt{23}$
$=23030\sqrt{23}$
Hence, the correct answer is $23030\sqrt{23}$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Preliminary Admit Card Date: 25 Jul, 2025 - 5 Aug, 2025
Tier I Exam Date: 13 Aug, 2025 - 30 Aug, 2025
Application Date: 26 Jul, 2025 - 17 Aug, 2025

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books