Question : If $\theta>0$ be an acute angle, then the value of $\theta$ in degrees satisfying $\frac{\cos^2\theta-3 \cos\theta+2}{\sin^2\theta}=1$ is:
Option 1: 90°
Option 2: 30°
Option 3: 45°
Option 4: 60°
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 60°
Solution : Given: $\frac{\cos^2\theta-3\cos\theta+2}{\sin^2\theta}=1$ ⇒ $\cos^2\theta-3\cos\theta+2=\sin^2\theta$ ⇒ $\cos^2\theta-2 \cos\theta+1-\cos\theta+1=\sin^2\theta$ ⇒ $(\cos\theta-1)^2-(\cos\theta-1)=1-\cos^2\theta$ ⇒ $(\cos\theta-1)(\cos\theta-1-1)=1-\cos^2\theta$ ⇒ $(\cos\theta-1)(\cos\theta-2)=-(\cos\theta-1)(1+\cos\theta)$ ⇒ $\cos\theta-2=-1-\cos\theta$ ⇒ $2\cos\theta=1$ ⇒ $\cos\theta=\frac{1}{2}$ ⇒ $\theta=60°$ Hence, the correct answer is 60°.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $r\sin\theta=\frac{7}{2}$ and $r\cos\theta=\frac{7\sqrt3}{2}$, then the value of $\theta$ is:
Option 1: 30°
Option 2: 45°
Option 3: 60°
Option 4: 75°
Question : If $\sin ^2 \theta-3 \sin \theta+2=0$, then find the value of $\theta\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$.
Option 1: 45°
Option 2: 0°
Option 4: 90°
Question : If $\theta$ is positive acute angle and $7\cos^{2}\theta+3\sin^{2}\theta =4$, then the value of $\theta$ is:
Option 1: $60^{\circ}$
Option 2: $30^{\circ}$
Option 3: $45^{\circ}$
Option 4: $90^{\circ}$
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Option 3: $90^{\circ}$
Option 4: $45^{\circ}$
Question : For any acute angle $\theta, \sin \theta+\sin^2 \theta=1$, then the value of $\cos^2 \theta+\cos^4 \theta=$___________.
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –1
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile