Hello, Given cot A = 3 tan A
We know that cot A = 1 / tan A
So, 1 / tan A = 3 tan A
Multiply both sides by tan A: 1 = 3 tan²A
tan²A = 1 / 3
tan A = 1 / √3
The angle whose tangent is 1 / √3 is 30°.
So, the measure of angle A is 30°.
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Option 1: 4
Option 2: 2
Option 3: 3
Option 4: 6
Question : If $\tanθ + \cotθ = 2$, $\theta$ is an acute angle, then find the value of $2 \tan^{25}θ + 3 \cot^{20}θ + 5 \tan^{30}θ \cot^{15}θ$.
Option 1: 8
Option 2: 6
Option 3: 10
Option 4: 12
Question : If $\theta$ is an acute angle and $\tan \theta+\cot \theta=2$, then the value of $\tan ^{200} \theta+\cot ^{200} \theta$ is:
Option 1: 1
Option 3: –1
Option 4: 0
Question : If the measure of one angle of a right triangle is 30º more than the measure of the smallest angle, then the measure of the smallest angle is:
Option 1: 90º
Option 2: 60º
Option 3: 30º
Option 4: 75º
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile