Question : If $\tanθ + \cotθ = 2$, $\theta$ is an acute angle, then find the value of $2 \tan^{25}θ + 3 \cot^{20}θ + 5 \tan^{30}θ \cot^{15}θ$.
Option 1: 8
Option 2: 6
Option 3: 10
Option 4: 12
Correct Answer: 10
Solution : Given: The value of the trigonometric equation is $\tanθ + \cotθ = 2$ where $θ$ is an acute angle. $\tanθ + \cotθ = 2$ ⇒ $\tan 45^{\circ} + \cot45^{\circ} = 2$ ⇒ $\theta = 45^{\circ}$ The value of the trigonometric expression $2 \tan^{25}45^{\circ} + 3 \cot^{20}45^{\circ} + 5 \tan^{30}45^{\circ} \cot^{15}45^{\circ}=2+3+5=10$ Hence, the correct answer is 10.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If 4$\theta$ is an acute angle, and cot 4$\theta$ = tan($\theta$ – 5°), then what is the value of $\theta$?
Option 1: 19°
Option 2: 45°
Option 3: 21°
Option 4: 24°
Question : If $\theta$ is an acute angle and $\sin \theta+\operatorname{cosec} \theta=2$, then the value of $\sin ^5 \theta+\operatorname{cosec}^5 \theta$ is:
Option 1: 10
Option 2: 2
Option 3: 4
Option 4: 5
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Option 1: $1$
Option 2: $2$
Option 3: $\sqrt2$
Option 4: $0$
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Option 1: $\cot ^2 \theta-\tan ^2 \theta$
Option 2: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Option 3: $\ {\sec}^4 \theta-\ {\sec}^4 \theta$
Option 4: $ \ {\sec}^4 \theta+\ {\sec}^2 \theta$
Question : If $\tan (11 \theta)=\cot (7 \theta)$, then what is the value of $\sin ^2(6 \theta)+\sec ^2(9 \theta)+\operatorname{cosec}^2(12 \theta) ?$
Option 1: $\frac{23}{6}$
Option 2: $\frac{35}{12}$
Option 3: $\frac{31}{12}$
Option 4: $\frac{43}{12}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile