Question : If $[4-\frac{5}{1+\frac{1}{3+\frac{1}{2+\frac{1}{4}}}}]$ part of a journey takes 10 minutes, then to complete $\frac{3}{5}$ th of a journey, it will take:
Option 1: 40 minutes
Option 2: 45 minutes
Option 3: 48 minutes
Option 4: 50 minutes
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 48 minutes
Solution : Given: $[4-\frac{5}{1+\frac{1}{3+\frac{1}{2+\frac{1}{4}}}}]$ = $[4-\frac{5}{1+\frac{1}{3+\frac{4}{9}}}]$ = $[4-\frac{5}{1+\frac{9}{31}}]$ = $[4-\frac{5×31}{40}]$ = $\frac{1}{8}$ So, $\frac{1}{8}$th journey takes 10 minutes. Therefore, $\frac{3}{5}$th journey takes $10×8×\frac{3}{5}=48$ minutes Hence, the correct answer is 48 minutes.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : A journey takes 4 hours 30 minutes at a speed of 60 km/h. If the speed is 15 m/s, then the journey will take:
Option 1: 5 hours
Option 2: 5 hours 30 minutes
Option 3: 6 hours
Option 4: 6 hours 15 minutes
Question : Rahul alone can complete a work in 10 days and Sonu alone can complete the same work in 15 days. If they work together for 4 days, then what part of total work is left?
Option 1: $\frac{2}{3}$
Option 2: $\frac{1}{5}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{2}{5}$
Question : If $a^3+b^3=9$ and $a+b=3$, then the value of $\frac{1}a+\frac{1}b$ is:
Option 1: $\frac{1}2$
Option 2: $\frac{3}2$
Option 3: $\frac{5}2$
Option 4: $–1$
Question : If $X$ is 20% less than $Y$, then find the values of$\frac{Y–X}{Y}$ and $\frac{X}{X–Y}$.
Option 1: $\frac{1}{5}$ and $-4$
Option 2: $5$ and $-\frac{1}{4}$
Option 3: $\frac{2}{5}$ and $-\frac{5}{2}$
Option 4: $\frac{3}{5}$ and $-\frac{5}{3}$
Question : If $a^4+\frac{1}{a^4}=194$, then what is the value of $a^3+\frac{1}{a^3} ?$
Option 1: 44
Option 2: 52
Option 3: 48
Option 4: 50
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile