5 Views
Question : If the side of a square is $\frac{1}{2}(x+1)$ units and its diagonal is $\frac{3-x}{\sqrt{2}}$ units, then the length of the side of the square would be:
Option 1: $\frac{4}{3}$ units
Option 2: $\frac{1}{2}$ unit
Option 3: 1 unit
Option 4: 2 units
Answer (1)
Correct Answer: 1 unit
Solution : Given: Side = $\frac{1}{2}(x+1)$ and diagonal = $\frac{3−x}{\sqrt2}$
We know that diagonal = $\sqrt 2$ × side
Putting the values, we get:
⇒ $\frac{3−x}{\sqrt2} = \sqrt2(\frac{1}{2}(x+1))$
⇒ $3−x =x+1$
⇒ $x = 1$
Hence, the correct answer is 1 unit.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
Upcoming Exams
Application Date:
1 Jul, 2025
- 21 Jul, 2025
Exam Date:
12 Jul, 2025
- 12 Jul, 2025
Exam Date:
26 Jul, 2025
- 27 Jul, 2025
Exam Date:
26 Jul, 2025
- 28 Jul, 2025
1st Stage CBT
Exam Date:
7 Aug, 2025
- 8 Sep, 2025