Question : If the side of a square is $\frac{1}{2}(x+1)$ units and its diagonal is $\frac{3-x}{\sqrt{2}}$ units, then the length of the side of the square would be:
Option 1: $\frac{4}{3}$ units
Option 2: $\frac{1}{2}$ unit
Option 3: 1 unit
Option 4: 2 units
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1 unit
Solution : Given: Side = $\frac{1}{2}(x+1)$ and diagonal = $\frac{3−x}{\sqrt2}$ We know that diagonal = $\sqrt 2$ × side Putting the values, we get: ⇒ $\frac{3−x}{\sqrt2} = \sqrt2(\frac{1}{2}(x+1))$ ⇒ $3−x =x+1$ ⇒ $x = 1$ Hence, the correct answer is 1 unit.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If for an isosceles triangle, the length of each equal side is $a$ units and that of the third side is $b$ units, then its area will be:
Option 1: $\frac{1}{4}\sqrt{4b^{2}-a^{2}}$ sq. units
Option 2: $\frac{a}{2}\sqrt{2a^{2}-b^{2}}$ sq. units
Option 3: $\frac{b}{4}\sqrt{4a^{2}-b^{2}}$ sq. units
Option 4: $\frac{b}{2}\sqrt{a^{2}-2b^{2}}$ sq. units
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{3}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{5}{3}$
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Option 1: $\frac{x}{\sqrt{1–x^2}}$
Option 2: $\frac{x}{\sqrt{1+x^2}}$
Option 3: $\frac{\sqrt{1–x^2}}{x}$
Option 4: $\frac{\sqrt{1+x^2}}{x}$
Question : If $\cos x=-\frac{1}{2}, x$ lies in third quadrant, then $\tan x=?$
Option 1: $\sqrt{3}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\frac{1}{\sqrt{3}}$
Question : If $x=\frac{4\sqrt{ab}}{\sqrt a+ \sqrt b}$, then what is the value of $\frac{x+2\sqrt{a}}{x-2\sqrt a}+\frac{x+2\sqrt{b}}{x-2\sqrt b}$(when $a\neq b$)?
Option 1: 0
Option 2: 2
Option 3: 4
Option 4: $\frac{(\sqrt a+\sqrt b)}{(\sqrt a - \sqrt b)}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile