Question : If the third proportional of $3x^2$ and $4xy$ is 48, find the positive value of $y$.
Option 1: 3
Option 2: 5
Option 3: 2
Option 4: 4
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 3
Solution : Given: The third proportional of $3 x^2$ and $4xy$ is 48. So, $3x^2:4xy::4xy:48$ ⇒ $\frac{3x^2}{4xy}=\frac{4xy}{48}$ ⇒ $16y^2=144$ ⇒ $y^2=\frac{144}{16}$ ⇒ $y^2=9$ ⇒ $y=3$ (Since we need to find the positive value) Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $4 x^2+y^2=40$ and $x y=6$, find the positive value of $2 x+y$.
Option 1: 8
Option 2: 6
Option 3: 5
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Option 1: 1
Option 2: 2
Option 3: $\sqrt{5}$
Option 4: 5
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{3}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{5}{3}$
Question : The third proportional of the following numbers $(x-y)^2, (x^2-y^2)^2$ is:
Option 1: $(x+y)^3(x-y)^2$
Option 2: $(x+y)^4(x-y)^2$
Option 3: $(x+y)^2(x-y)^2$
Option 4: $(x+y)^2(x-y)^3$
Question : X is directly proportional to the square of Y. When X is 12, then Y is 2. Find the value of X when Y is 3.
Option 1: 30
Option 2: 9
Option 3: 27
Option 4: 18
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile