Question : If $(\operatorname{cosec} \theta-\cot \theta) = \frac{7}{2}$, the value of $\operatorname{cosec} \theta$ is:
Option 1: $\frac{47}{28}$
Option 2: $\frac{51}{28}$
Option 3: $\frac{53}{28}$
Option 4: $\frac{49}{28}$
Correct Answer: $\frac{53}{28}$
Solution : Given: $(\operatorname{cosec} \theta-\cot \theta) = \frac{7}{2}$ (equation 1) We know the trigonometric identity, $(\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1$ Substitute the value from equation 1 into the above identity, and we get, ⇒ $\frac{7}{2}\times(\operatorname{cosec} \theta+\cot \theta) = 1$ ⇒ $(\operatorname{cosec} \theta+\cot \theta) = \frac{2}{7}$ (equation 2) Adding equations 1 and 2, we get, $(\operatorname{cosec} \theta–\cot \theta) + (\operatorname{cosec} \theta+\cot \theta) = \frac{7}{2} + \frac{2}{7}$ ⇒ $2\times \operatorname{cosec} \theta = \frac{53}{14}$ $\therefore \operatorname{cosec} \theta = \frac{53}{28}$ Hence, the correct answer is $\frac{53}{28}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Option 1: $\frac{4+\sqrt{2}}{2}$
Option 2: $\frac{2+\sqrt{3}}{2}$
Option 3: $\frac{4+\sqrt{3}}{2}$
Option 4: $\frac{2+\sqrt{2}}{2}$
Question : If $\tan (11 \theta)=\cot (7 \theta)$, then what is the value of $\sin ^2(6 \theta)+\sec ^2(9 \theta)+\operatorname{cosec}^2(12 \theta) ?$
Option 1: $\frac{23}{6}$
Option 2: $\frac{35}{12}$
Option 3: $\frac{31}{12}$
Option 4: $\frac{43}{12}$
Question : If the value of $\operatorname{cosec} A + \cot A = m$, then the value of $\operatorname{cosec} A - \cot A$ is:
Option 1: $\frac{1}m$
Option 2: $m$
Option 3: $\sqrt{m}$
Option 4: $m^2$
Question : If $7 \sin ^2 \theta+3 \cos ^2 \theta=4,0^{\circ}<\theta<90^{\circ}$, then the value of $(\tan ^2 2 \theta+\operatorname{cosec}^2 2 \theta)$ is:
Option 1: $7$
Option 2: $\frac{15}{4}$
Option 3: $\frac{13}{3}$
Option 4: $\frac{13}{4}$
Question : If $\cot^2θ = 1 - e^2$, then the value of $\operatorname{cosec} θ + \cot^3θ \sec θ$ is:
Option 1: $\left(2-{e}^2\right)^ \frac{1}{2}$
Option 2: $\left(1-{e}^2\right)^ \frac{3}{2}$
Option 3: $\left(1-{e}^2\right)$
Option 4: $\left(2-{e}^2\right) ^\frac{3}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile